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Biases

= |ntentional

— Large-scale

= |nevitable

— Department of Energy
e NERSC
e Advanced Computing Laboratory (LANL)
e Argonne Leadership Computing Facility
— Plasma physics
— USA



Questions

= |s it physics?

/—_\
Lattice QCD

Molecular dynamics

Protein folding

EIectronic Structure

J. Chem. Phys.
/

—

/—_\
Plasma simulation
Physical Review

/

= s itlarge-scale?
— 20% of leadership-class machine
— Distributed-memory parallelism

— Too large/slow for O(100) processor cluster



Sources

Scientific Grand Challenges . C 1D A( :
FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND REVIEW
THE ROLE OF COMPUTING AT THE EXTREME SC A LE o
: Advanced Computmg
Journals : lanuary 26-28, 7 fashington, D.C.
— Physical Review
Journal of Computational Physics
— |EEE Computer
= Proceedings
Computatinn Asa
— SC’ |PDPS e, ;I":):Ihfyosriglscovery
Extreme Scale workshops T ——————
= Computer center annual reports
NERSC, ALCF, OLCF, PSC, TACC
Reviews/reports
— SciDAC Review
Books

JINS09

Computation as a Tool for Discovery in Physics (NSF report, 2002)

L)
NOY2
o3

Petascale Computing: Algorithms and Applications (Bader, 2008)
Various “Computational Physics” texts

We
Lopay oceAN MODEY



Physics Areas

Condensed Matter High Energy Astrophysics/
Relativity
Plasma Atomic/Molecular Nuclear

Climate/weather Turbulence Geophysics



Application Types

PIC
Lattice QCD [ Plasma T
Fluid(s)
[Electronic Structure DFT
DNS |
[ Electromagnetics J [ = Lattice Gas/BoItzmann]
LES/RANS |
Accelerator Beam
SPH |
[ Monte Carlo Transport ] [ Cosmology Structure Evolution ]
[ Climate J [ Structural Mechanics J
[ Nuclear Structure ] Seismic Wave Propagation J
[ Earthquake :
Dynamic Rupture J

: Nuclear Burn ]
[ Combustion

DDT ] Atomistic Molecular Dynamics




Wide Range of Scales of Interest




Tu rbu lence Wide Range of Scales

Turbulent Fluid Flow.

= Range of length scales in 3D turbulence ~ R_%/*

= State-of-the-art DNS (direct numerical simulation): R, = 0(10%)
— Range of length scales = 0(10°)

= Need for more

— Physical R, for commercial jet aircraft = O(107 — 108)
— Physical R, for atmospheric flow = O(107 — 108)



Cosmo logy Wide Range of Scales

Cosmology: Simulate evolution of large-scale structure of the universe

State-of-the-art simulation: resolve galaxy-halo-sized structures

Range of length scales is > 10°
— Simulation domain 1 Gpc on a side
— Force resolution O(10) kpc

= Range of mass scales is 10%-10°
— 1 ptclis 1-10 billion M,

— Milky Way dark matter halo is 60 billion - 3 trillion
solar masses

— 10 billion ptcles

= Need for more
— Resolve galaxies (“baryonic” matter)...stars




Plasma Physics

Fusion energy applications.

atomic mfp electron-ionmfp

skin depth system size

tearing length

ion gyroradius

debye length

electron gyroradius

Spatial Scales (m)

10% 10° 108

10°% 104

Wide Range of Scales

pulse length
—

Inverse ion plasma frequency current diffusion

inverse elechron plasma frequency  confinement

iongyroperiod  lon collision

eleclrongyroperiod  eleclron collision

105 107 1P
Temporal Scales (s)

10
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Plasma Physics

Electrostatic ion microturbulence in a tokamak

atomic mip electron-ionmip
skin depth systern size

tearing length

ion gyroradius

debye length

electron gyroradius

spatial Scales (m)

102 10° 1

10% 104
= Need for more

— Electron kinetics, full-f
— Magnetic fluctuations

Wide Range of Scales

pulse length
—

curmrent diffusion

Inverse ion Fi?sn'ia frequency
inverse _eleclron plasma frequency Lnfineme nt
iongyroperiod  lon collision

elecron gyrog'iod glechron collision

10° TR
Temporal Scales (s)

o
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U
Wide Range of Scales

Geophysics

Seismic Wave Propagation.

=  State-of-the-art simulation

— M8: magnitude-8 on San Andreas Fault
e 800 x 400 km area in Southern California (85 km deep)
e Frequencies 0-2 Hz
* 6 minutes simulated time
e Grid resolution 40 m ==> 436 billion grid cells
e CFL ==>160,000 timesteps

= Need for more

— Sub-skyscraper building relevance: 3-10 Hz
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[Brute Force Computational Approach}




Turbulence

Turbulent Fluid Flow.

[ Brute Force Approach }

Direct Numerical Simulation: Discrete solution of Navier-Stokes
equations

Finite volume
Spectral
Pseudospectral
Spectral element

Less brutish, but less general

Reynolds-averaged Navier-Stokes (RANS)
Large-eddy simulation (LES)
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CosmOlogy [ Brute Force Approach ]

Simulate evolution of large-scale structure of the universe.

= Dark matter: Particle-mesh
— Poisson solve for long-range interactions
— Short-range interactions
— MC”3 code: local particle-particle interaction
— Enzo code: AMR
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\
P lasma Physics [ Brute Force Approach ]

Fusion energy applications: tokamak ion microturbulence

= Jlons: Vlasov equation for phase-space distribution f(x,p)
— Reduce to gyrokinetic form representing sufficient
— GTC code: particle-in-cell (PIC) ions
— GYRO code: discretize (x,p) phase space

= Electromagnetic fields: Maxwell's equations
— Reduce to Poisson equation in electrostatic limit

—




Geophysics [ Brute Force Approach ]

Seismic Wave Propagation.

= Discrete solution of equations for anelastic solids
— Finite difference (FD)
— Finite volume
— Spectral element
— Finite element

=  AWP-ODC code: staggered FD scheme
— 4t order in space, 2" order in time
— Split-node algorithm for dynamic fault rupture modeling
— M8 problem: uniform mesh

17



Persistent Players
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Live Long [ Persistent Players J

——=NSU3D = OVERFLOW(-2) = OpenFOAM = CFD++ —FDL3DI
— AVBP HadCM/HadGEM  =———AM2 —MOM = CESM
= \WIEN = AMBER CPMD = \/ASP = | AMMPS
== NAMD == NWChem == GAUSSIAN GLF GS2
== GYRO = XGC = GENE = PG3EQ GTC
AWP-ODC MCA3 Enzo
CCFD (
CCIimate (
Elec. Structure,
MD
CPIasma (
CSeismic (
CCosmoIogy (
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END

Slides: http://www.alcf.anl.gov/~zippy/publications/presentations/APSMarch2011.pdf
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